知名百科  > 所属分类  >  商业百科    科技百科    综合词条   

车联网

车联网,英文叫做 IoV(Internet of Vehicles),它属于物联网(IoT,Internet of Things)的一种。Vehicle,就是车辆、交通工具的意思。
车联网(Internet of Vehicles)概念引申自物联网(Internet of Things),根据行业背景不同,对车联网的定义也不尽相同。传统的车联网定义是指装载在车辆上的电子标签通过无线射频等识别技术,实现在信息网络平台上对所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求对所有车辆的运行状态进行有效的监管和提供综合服务的系统。
目录

网站背景 编辑本段

车联网概念引申自物联网(Internet of Things)。
随着车联网技术与产业的发展,上述定义已经不能涵盖车联网的全部内容。根据车联网产业技术创新战略联盟的定义,车联网是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在车-X(X:车、路、行人及互联网等)之间,进行无线通讯和信息交换的大系统网络,是能够实现智能化交通管理、智能动态信息服务和车辆智能化控制的一体化网络,是物联网技术在交通系统领域的典型应用。
2013年8月27日,由中国汽车工程学会发起成立的“车联网产业技术创新战略联盟”在北京正式成立。该联盟由包括15家整车厂在内的共30家单位组成,成员涵盖了汽车制造商、移动通信运营商、硬件设备制造商、软件服务提供商及有关科研院所。联盟旨在通过联合各相关行业的力量,协同攻关、协调发展,在推进Telematics车载应用服务之外,重点推动车联网技术对于汽车安全性与经济性等性能提升的应用。
2015年1月22日,百度官方正式宣布,百度车联网战略将于2015年1月27日正式发布。至此,包括腾讯、阿里巴巴、百度在内的互联网三巨头全部参战车联网系统争夺战。

体系介绍 编辑本段

从网络上看,IOV系统是一个“端管云”三层体系。
第一层(端系统):端系统是汽车的智能传感器,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。
第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。
第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了ITS、物流、客货运、危特车辆、汽修汽配、汽车租赁、企事业车辆管理、汽车制造商、4S店、车管、保险、紧急救援、移动互联网等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、计算、调度、监控、管理与应用的复合体系。
值得注意的是,截至2013年,GPS+GPRS并不是真正意义上的车联网,也不是物联网,只是一种技术的组合应用,目前国内大多数ITS试验和IOV概念都是基于这种技术实现的。

发展历程 编辑本段

车联网在国外起步较早。在20世纪60年代,日本就开始研究车间通信。2000年左右,欧洲和美国也相继启动车联网系统多个车联网项目,旨在推动车间网联系统的发展。2007年,欧洲6家汽车制造商(包括BMW等)成立了Car2Car通信联盟,积极推动建立开放的欧洲通信系统标准,实现不同厂家汽车之间的相互沟通。2009年,日本的VICS车机装载率已达到90%。而在2010年,美国交通部发布了《智能交通战略研究计划》,内容包括美国车辆网络技术发展的详细规划和部署。
与国外车联网产业发展相比,我国的车联网技术直至2009年才刚刚起步,最初只能实现基本的导航、救援等功能。随着通信技术的发展,2013年国内汽车网络技术已经能够实现简单的实时通信,如实时导航和实时监控。在2014-2015年,3G和LTE技术开始应用于车载通信系统以进行远程控制。2016年9月,华为、奥迪、宝马和戴姆勒等公司合作推出5G汽车联盟(5GAA),并与汽车经销商和科研机构共同开展了一系列汽车网络应用场景。此后至2017年底,国家颁布了多项方案,将发展车联网提到了国家创新战略层面。在这期间,人工智能大数据分析等技术的发展使得车载互联网更加实用,如企业管理和智能物流。此外ADAS等技术可以实现与环境信息交互,使得UBI业务的发展有了强劲的助推力。未来,依托于人工智能、语音识别和大数据等技术的发展,车联网将与移动互联网结合,为用户提供更具个性化的定制服务。

应用趋势 编辑本段

“车-路”信息系统一直是智能交通发展的重点领域。在国际上,美国的IVHS、日本的VICS等系统通过车辆和道路之间建立有效的信息通信,实现智能交通的管理和信息服务。RFID技术近年来在物流与供应链管理领域以及交通运输领域智能化管理中得到了应用,如智能公交定位管理和信号优先、智能停车场管理、车辆类型及流量信息采集、路桥电子不停车收费、高速公路多义性路径识别及车辆速度计算分析等方面取得了一定的应用成效。
摩根士丹利研究部近日(2013.11.)发布了一份名为“自动驾驶汽车(Autonomous Cars):自动驾驶车,汽车产业新范儿”的报告。10个全球研发团队经过了几个月采访未来学家、汽车行业高管和业外潜在颠覆者。该报告预示着由于几乎完全消除汽车交通事故,将大大减少人类死亡和痛苦,由于降低医疗成本、减少拥堵、节省燃油和提高生产力,仅在美国每年可节省1.3万亿美元——占GDP的比例约为8%。“现在我们清楚地看到,不仅是自动驾驶汽车真实的,但他们很可能会比大多数人想象的更早来到我们身边”报告说。“自动驾驶汽车路线图:基本的自动驾驶能力今天已经实现,半自动驾驶能力在未来12-18个月内实现,全自动驾驶能力(已经有原型机)商业化在2020年实现。”V2X通信是自动驾驶汽车的关键技术,“自动驾驶车辆需要可靠的传感器来发挥自己的潜力”,V2X(车辆与车辆、车辆到基础设施)通信技术公司Cohda Wireless首席执行官保尔-盖利说。V2X是一个无线传感器系统,使车辆与其他周围的车辆分享他们的传感器数据。作为标准传感器,如雷达、光学、超声波和激光雷达所有都是视线,他们只能检测到可见的风险。非视觉传感器360度感知可以检测到隐藏于视觉外的威胁,因此它可以扩展感知范围,超出了驾驶员视野。
V2X系统可靠性很重要,譬如两辆车行驶在一条直路上,当两辆车相互接近时存在死角,在丘陵的坡峰,在高速公路上行驶,或当车车之间有卡车行驶。
摩根士丹利的报告还指出,自动驾驶能力可能会改变汽车业的基本面,如车的“价值”从硬件转移到软件、组件,以及,新玩家进入市场,并迫使现有选手彻底改造自己或放弃份额。恩智浦半导体高级副总裁、汽车娱乐业务部总经理托斯滕-雷曼表示。
思科系统公司产品管理总监安德烈亚斯•麦说“‘物联网’何以改变我们的生活,V2X技术是一个很好的例子”。Cohda的V2X解决方案使车辆相互沟通,让司机和最终自动驾驶车一些额外的预警时间,可以防止迫在眉睫的撞车事故,”他说。
美国安全试验示范计划(SPMD,Safety Pilot Model Deployment )有2800辆车安装了V2X设备。
密歇根大学交通研究所( UMTRI )2013.6.进行摩托车导入车联通信研究,作为美国安全试验示范计划(US Safety Pilot Model Deployment)一部分,以确定轿车、卡车和公共汽车如何采用V2V(车对车)通信技术,与摩托车互动。 UMTRI与摩托车制造商本田和宝马合作,在密歇根州安阿伯引入摩托车到车联环境中进行概念性验证,在项目的研究领域完成2项任务。连接的摩托车将参与摩托车通信可行性的测试和摩托车到车辆( M2V )通信性能测试。据美国国家公路交通安全管理局(NHTSA )的数据,摩托车事故占所有公路死亡人数的5% ,但80%的事故导致人身伤害或死亡,相比之下,汽车占20% 。车联网技术还解决了这些易受伤害的道路使用者,这点非常重要。摩托车在美国运输部的整体安全策略中占重要位置。
该V2V连接车辆设备是由Cohda提供,内含恩智浦软件定义的无线电芯片RoadLINK芯片组和运行车联通信的Cohda固件,卫星导航精确定位模块为NV08C。 V2V通信,即使在城市环境中建筑阻挡司机在路口看见对方,车辆能够互相通信。在这些安全苛刻场景,车联技术可喜扩展到弱势道路使用者,如摩托车手和行人。

三大瓶颈 编辑本段

车联网三大瓶颈:主导、技术、模式

主导缺失

与智能电网、安防等领域相比,车联网并不是最成熟、最接近实际应用的物联网应用,但凭借其战略高度和庞大的消费级市场,仍然赢得了强烈的关注。
车联网的出现,为汽车制造、内容提供和移动通信等领域带来产业升级机遇。一方面促使汽车行业从单纯硬件销售,转为与服务、内容捆绑的新模式;另一方面,又让运营商和服务商得以迅速定位高端客户群体,便于提供产品和服务。此外,国家对新能源汽车“必须具备远程监控能力”的要求,也让车联网横跨两大战略性新兴产业。
所谓车联网并无严格定义,简单地说,就是将汽车作为信息网络中的节点,通过无线通信等手段实现人、车、路及环境的协同交互,实现智能交通。然而,自诞生之日起,车联网便始终面临缺乏统一管理主体的“无人驾驶”局面。
相比三大管理部门,移动运营商、汽车电子企业、内容提供商、服务提供商对参与车联网的兴趣更为积极。由于车联网产业链较长,参与行业众多,对车联网“盲人摸象”式的理解比比皆是,其中的利益博弈也在所难免。

技术短板

随着车联网概念的诞生,汽车电子也从原来的以机械、安全为主,转变为强调系统整合能力,以及车与车、车与环境之间的协同交互。
车联网要解决各系统间的信息交换和共享问题,同时与司机和乘客实现有效互动。此外,车联网通过车身网络连接,还可以获取车身中各类传感器数据,处理后用于报警或远程诊断。然而,绝大多数用于信息采集的高端传感器,其芯片核心技术并不为中国公司所掌握。
与此同时,通信网络带宽瓶颈,也成为车联网一个技术难题。3G网络带宽并不能满足未来对图像和流媒体的传输需求,而4G网络和DSRC(专用短程通信)的自主网技术等也还没有完全突破。目前国内在芯片设计和开发上已经具备一定水平,但自主可控可管的问题仍然严峻。中国的互联网域名系统和地址,以及物品条码,用的都是国外的技术体系、编码地址,车联网在车辆标识上不能重蹈覆辙。
实际上,公安部已经推出一种识别率在99.9%以上的专用电子标签,可安装在汽车挡风玻璃上,形成对车辆身份和位置信息的唯一标识。不过,要对车辆信息进行跟踪,还需要在监控区域部署一定密度的数据采集设施。

模式难行

在巨大的市场诱惑面前,车联网的相关企业不愿坐等技术与管理破局。电信运营商、汽车电子和服务企业,甚至汽车贸易企业,开始以一种简化版的车联网运营模式向前推进——围绕车载智能平台进行集成,实现内容和应用的整合。
凭借移动网络通道的优势,三大运营商在车联网上的推进方式,基本是将车载智能终端与无线通道相连,以提供实时交通路况、导航、救援定位、车况检测、4S店预约等运营服务,多基于呼叫中心或移动互联网,并不涉及什么新的技术,只相当于在现有网络基础上一个新的业务拓展。
但即便是现有的这种模式,也并不能确保在商业模式上的成功。进入市场的所谓“车联网”产品和服务,都是汽车制造商替终端用户埋单,通常一年到三年,到期后是否会主动续约服务还是未知数。

运营模式 编辑本段

作为物联网与智能化汽车两大领域的重要交集,车联网通过汽车收集、处理、共享道路与车辆信息,通过人与车、车与车、车与控制中心的多重互动,实现轮子上的智能生活

市场价值

车联网行业的诞生并非炒作,其本身有实实在在的市场价值存在:
1、减少售后纠纷,一切用数据说话
车联网系统可以监控并保存车辆的运行数据,当车辆发生故障,并因此引起客户损失,可以用数据平息双方的争端,帮助客户避免重复不规范操作的错误,这点尤其是在客运行业非常有效。
2、在线跟踪,避免配件耗材销售机会的流失
通过对车辆运行数据的采集,同时也形成配件、耗材的使用情况报告,在需要更换以前,及时锁定配件、耗材及维修的销售机会。
3、故障预警,避免重大事故
一般车联网系统,都有一套管理平台,平台可以生成各种主题的历史数据分析报表,趋势报告,并通过页面、邮件、短信等方式报告异常情况,避免小故障带来大事故。
4、降低售后维护成本
掌握车辆运行数据,意味着可以分析判断故障原因。对于可以远程排除的故障,就降低人员出差成本。
5、形成制造+服务的商业模式,从单一的车辆生产商转变为服务提供商,形成产品和服务的差异化,避免直接价格竞争
车辆生产商可以向客户附加销售远程管理系统,也可以通过提供可视化的管理服务,一方面可以自行或委托第三方收取服务费用,另一方面可以通过多元化服务增加车辆卖点,来更好的“卖车”,避免残酷的直接价格竞争。

产业链

车联网产业链划分为以下5个角色:车厂、车主、网络运营商、技术提供商(软硬件)、内容提供商。
车厂:作为车联网的主导角色,是整条产业链的价值利益枢纽,向技术提供商、内容提供商提出开发需求,向最终客户更好的卖车,从而获得利益,近而将这些利益转嫁给产业链中的其他角色。
车主:羊毛出在羊身上,最终所有费用,还是会由车主承担;承担方式由很多种,比较理想化的方式,由产业链中的某一角色站出来主导收取运营维护费,但是国内客户的消费心理,加上当前国内现阶段车联网技术并没有给客户非常良好的价值体验,如何收取运营维护费用成为一大难题。
所以,当前车联网系统的诞生,各大主机厂其主要目的应该是在激励的市场竞争中,增加车辆卖点,更好的卖车,避免残酷价格竞争。
车联网技术能否广泛运用,这个得分行业来讲。先讲商用车,商用车里面又可以分为货车和客车。客车的车联网系统,比较有名的是苏州金龙的G-BOS,G-BOS系统的理念:司机驾驶行为的好坏与车辆安全隐患、车辆油耗还有车辆使用寿命息息相关。就在上个月,G-BOS智慧运营系统被写入该系列之《物联网与智能交通》一书。
乘用车车联网系统的开发难题不在技术也不在政策,小轿车作为一款消费性工具,对于系统到底能提供哪些信息服务,对这些信息服务的刚性需求到底有多大,客户是否愿意承担这笔费用,产业链中谁来承担这个收费的角色,这些问题一直没有明确的答案。只有理清楚这些问题,产业链中各个角色就愿意“掏钱”来建设该系统,这样,才会形成比较扎实的车联网产业链。
车联网是一个新概念,也是一个很有吸引力的概念,很多企业都喜欢用这一概念来包装自己,有做路灯远程控制的企业宣称自己是车联网企业、做停车场收费系统也称自己的系统是车联网系统,做硬盘录像机的也是车联网企业,他们并没有说错。物联网本身定义可以理解为“物物相连”,车联网也一样,前面提到的几个厂家,也是通过自己的产品将各个车辆之间的一些信息形成交汇整合,至少不能说他错。物联网、车联网其实质是一个信息整合过程,谁能将更多有用的信息整合到位,给最终客户及产业链中的其他角色带来效益,谁才是有核心竞争力的车联网。

发展方向

未来的汽车有可能不是电动化的,但会是电子化的;汽车将成为最大的电子品,这种观点也被越来越多的人接受。但是,汽车的电子化发展,在方向有:传统汽车智能化、车联网、电动化、无人驾驶等,而能够落地的只有传统汽车智能化和车联网两个方向。传统汽车智能化,是以汽车厂商为主导的。车联网则比较复杂,能连接汽车的方案,截止2012年8月,只有车机方式(用线束CAN总线)、OBD方式(CAN总线上开放的标准梯形口);车机方式,有车厂主导的前装、有汽车设备商主导的后装;而OBD方式则是新兴的IT主导的,是IT技术及其理念,在汽车服务方面的应用。

关键技术 编辑本段

1、射频识别技术
射频识别(radio frequency identification,RFID)技术是通过无线射频信号实现物体识别的一种技术,具有非接触、双向通信、自动识别等特征,对人体和物体均有较好的效果。RFID不但可以感知物体位置,还能感知物体的移动状态并进行跟踪。RFID定位法目前已广泛应用于智能交通领域,尤其是车联网技术中更是对RFID技术有强烈的依赖,成为车联网体系的基础性技术。RFID技术一般与服务器、数据库、云计算、近距离无线通信等技术结合使用,由大量的RFID通过物联网组成庞大的物体识别体系。
2、传感网络技术
车辆服务需要大量数据的支持,这些数据的原始来源正是由各类传感器进行采集。不同的传感器或大量的传感器通过采集系统组成一个庞大的数据采集系统,动态采集一切车联网服务所需要的原始数据,例如车辆位置、状态参数、交通信息等。当前传感器已由单个或几个传感器演化为由大量传感器组成的传感器网络,并且通能够根据不同的业务进行处性化定制。为服务器提供数据源,经过分析处理后作为各项业务数据为车辆提供优质服务。
3、卫星定位技术
随着全球定位技术的发展,车联网的发展迎来了新的历史机遇,传统的GPS系统成为了车联网技术的重要技术基础,为车辆的定位和导航提供了高精度的可靠位置服务,成为车联网的核心业务之一。随着我国北斗导航系统的日益完善并投入使用,车联网技术又有了新的发展方向,并逐步实现向国产化、自主知识产权的时期过渡。北斗导航系统将成为我国车联网体系的核心技术之一,成为车联网核心技术自主研发的重要开端。
4、无线通信技术
传感网络采集的少量处理需要通信系统传输出云才能得到及时的处理和分析,分析后的数据也要经过通信网络的传输才能到达车辆终端设备。考虑到车辆的移动特性,车联网技术只能采用无线通信技术来进行数据传输,因此无线通信技术是车联网技术的核心组成部分之一。在各种无线传输技术的支持下,数据可以在服务器的控制下进行交换,实现业务数据的实时传输,并通过指令的传输实现对网内车辆的实时监测和控制。
5、大数据分析技术
大数据(Big Data)是指借助于计算机技术、互联网,捕捉到数量繁多、结构复杂的数据或信息的集合体。在计算机技术和网络技术的发展推动下,各种大数据处理方法已经开始得到广泛的应用。常见的大数据技术包括信息管理系统、分布式数据库、数据挖掘、类聚分析等,成为不断推动大数据在车联网中应用的强大驱动力。
6、标准及安全体系
车联网作为一个庞大的物联网应用系统,包含了大量的数据、处理过程和传输节点,其高效运行必须有一套统一的标准体系来规范,从而确保数据的真实性和完整性,完成各项业务的应用。标准化已成为车联网技术发展的迫切要求,也是一项复杂的管理技术。另外,车辆联网和获取服务本身也是为了更好地为车辆安全行驶提供保障,因此安全体系的建立也十分重要。能否根据当前车联网发展情况,建立一套高效的标准和安全体系,已经成为决定未来车联网技术发展的关键因素。

​构造组成 编辑本段

1、车辆和车载系统。
车辆和车载系统是参与交通的每一辆汽车和车上的各种设备,通过这些传感器设备,车辆不仅可以实时地了解自己的位置、朝向、行驶距离、速度和加速度等车辆信息,还可以通过各种环境传感器感知外界环境的信息,包括温度、湿度、光线、距离等,不仅方便驾驶员及时了解车辆和信息,还可以对外界变化做出及时的反应。此外,这些传感器获取的信息还可以通过无线网络发送给周围的车辆、行人和道路,上传到车联网系统的云计算中心,加强了信息的共享能力。
2、车辆标识系统。
车辆上的若干标志标识和外界的标识识别设备构成了车辆标识系统,其中标志以RFID和图像识别系统为主。
3、路边设备系统。
路边设备系统会沿交通路网设置,一般会安装在交通热点地区、交叉路口或者高危险地区,通过采集通过特定地点的车流量,分析不同拥堵段的信息,给予交通参与者避免拥堵的若干建议。
4、信息通信网络系统。
有了若干信息之后,还需要信息通信系统对各种数据的传输,这是网络链路层的重要组成部分,目前车联网的通信系统以WIFI、移动网络、无线网络、蓝牙网络为主,车联网的大部分网络需求需要和网络运营商合作,以便和用户的手机随时连接。

附件列表


0

词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本词条还有待完善,请 编辑

上一篇 新闻通信方式    下一篇 无人驾驶汽车

同义词

暂无同义词